Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2300836

ABSTRACT

The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1ß, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Neoplasms , Noncommunicable Diseases , Humans , Aged , Vitamin D/therapeutic use , Sirtuin 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Quality of Life , Pandemics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vitamins , Neoplasms/prevention & control , Lipids
2.
Immun Inflamm Dis ; 11(3): e809, 2023 03.
Article in English | MEDLINE | ID: covidwho-2287510

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a severe and fatal respiratory disease. SIRT6 exerts pivotal activities in the process of lung diseases, but whether SIRT6 impacts ALI has not been covered. METHODS: Lentivirus recombinant expressing vector SIRT6 gene (Lent-SIRT6) was constructed in mice, and there were control, lipopolysaccharide (LPS), LPS + Vehicle, and LPS + Lent SIRT6 groups. RT-qPCR and western blot detected SIRT6 expression in lung tissues. HE staining observed pathological alternations in lung tissues. Wet-to-dry ratio of the lungs was then measured. The cell count of bronchoalveolar lavage fluid (BALF) was evaluated. Serum inflammation was examined with enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and western blot were to measure apoptosis. Western blot tested the expression of ACE2/STAT3/PIM1 signaling-associated factors. At the cellular level, LPS was used to induce lung epithelial cells BEAS-2B to establish cell injury models. SIRT6 was overexpressed and ACE2 expression was inhibited by cell transfection, and the mechanism of SIRT6 in LPS-induced lung injury model was further explored by Cell Counting Kit-8 (CCK-8), western blot, quantitative reverse-transcription polymerase chain reaction, TUNEL, and other techniques. RESULTS: The results of animal experiments showed that SIRT6 overexpression could reduce LPS-induced lung pathological injury, pulmonary edema, and BALF cell ratio and attenuate LPS-induced inflammatory response and cell apoptosis. In the above process, ACE2, STAT3, p-STAT3, and PIM1 expression were affected. In cell experiments, SIRT6 expression was reduced in LPS-induced BEAS-2B cells. Inhibition of ACE2 expression could reverse the inhibitory effect of SIRT6 overexpression on ACE2/STAT3/PIM1 pathway, and cellular inflammatory response and apoptosis. CONCLUSION: SIRT6 eased LPS-evoked inflammation and apoptosis of lung epithelial cells in ALI through ACE2/STAT3/PIM1 signaling.


Subject(s)
Acute Lung Injury , Sirtuins , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Apoptosis , Epithelial Cells/metabolism , Inflammation/genetics , Lipopolysaccharides/toxicity , Lung/pathology , Sirtuins/genetics , Sirtuins/metabolism
3.
Cells ; 12(6)2023 03 09.
Article in English | MEDLINE | ID: covidwho-2258563

ABSTRACT

Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.


Subject(s)
COVID-19 , Neoplasms , Sirtuins , Humans , COVID-19/metabolism , Metabolic Networks and Pathways , Neoplasms/metabolism , SARS-CoV-2/metabolism , Sirtuins/metabolism
4.
Eur J Med Chem ; 246: 114998, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2149665

ABSTRACT

Sirt6 activation has emerged as a promising drug target for the treatment of various human diseases, while only limited Sirt6 activators have been reported. Herein, a series of novel pyrrolo[1,2-a]quinoxaline-based derivatives have been identified as potent and selective Sirt6 activators with low cytotoxicity. Sirt6-knockdown findings have validated the on-target effects of this class of Sirt6 activators. Docking studies indicate the protonated nitrogen on the side chain of 38 forms π-cation interactions with Trp188, further stabilizing it into this extended binding pocket. New compounds 35, 36, 38, 46, 47, and 50 strongly repressed LPS-induced proinflammatory cytokine/chemokine production, while 38 also significantly suppressed SARS-CoV-2 infection with an EC50 value of 9.3 µM. Moreover, compound 36 significantly inhibited the colony formation of cancer cells. These new molecules may serve as useful pharmacological tools or potential therapeutics against cancer, inflammation, and infectious diseases.


Subject(s)
COVID-19 , Sirtuins , Humans , Sirtuins/metabolism , Quinoxalines/pharmacology , Quinoxalines/chemistry , SARS-CoV-2/metabolism
5.
Front Biosci (Landmark Ed) ; 27(9): 253, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2067594

ABSTRACT

SIRT1 was discovered in 1979 but growing interest in this protein occurred only 20 years later when its overexpression was reported to prolong the lifespan of yeast. Since then, several studies have shown the benefits of its increased expression in preventing or delaying of many diseases. SIRT1, as a histone deacetylase, is an epigenetic regulator but it has wide range of non-histone targets which are involved in metabolism, energy sensing pathways, circadian machinery and in inflammatory regulation. Disturbances in these interconnected processes cause different diseases, however it seems they have common roots in unbalanced inflammatory processes and lower level or inactivation of SIRT1. SIRT1 inactivation was implicated in coronavirus disease (COVID-19) severity as well and its low level counted as a predictor of uncontrolled COVID-19. Several other diseases such as metabolic disease, obesity, diabetes, Alzheimer's disease, cardiovascular disease or depression are related to chronic inflammation and similarly show decreased SIRT1 level. It has recently been known that SIRT1 is inducible by calorie restriction/proper diet, physical activity and appropriate emotional state. Indeed, a healthier metabolic state belongs to higher level of SIRT1 expression. These suggest that appropriate lifestyle as non-pharmacological treatment may be a beneficial tool in the prevention of inflammation or metabolic disturbance-related diseases as well as could be a part of the complementary therapy in medical practice to reach better therapeutic response and quality of life. We aimed in this review to link the beneficial effect of SIRT1 with those diseases, where its level decreased. Moreover, we aimed to collect evidences of interventions or treatments, which increase SIRT1 expression and thus, open the possibility to use them as preventive or complementary therapies in medical practice.


Subject(s)
Epigenesis, Genetic , Metabolic Diseases , Neoplasms , Sirtuin 1 , COVID-19 , Homeostasis , Humans , Inflammation , Metabolic Diseases/genetics , Metabolic Diseases/prevention & control , Neoplasms/genetics , Neoplasms/prevention & control , Quality of Life , Sirtuin 1/genetics , Sirtuin 1/metabolism
6.
Cureus ; 14(8): e27741, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2030302

ABSTRACT

Historically, selective internal radiation therapy (SIRT) with yttrium-90 (Y-90) requires a two-week interval between workup and treatment (map and treat). The intervening gap between workup and treatment is used to plan for the dose required and obtain delivery of the radioactive Y-90. During the coronavirus disease 2019 pandemic, the delivery of a robust SIRT service was challenging due to unprecedented demands on all hospital services. Emergent practice changes were required to ensure this service could still be delivered to patients while retaining sufficient inpatient hospital beds and services for acutely unwell patients. In response to this, the interventional radiology team proposed the retention of a full SIRT service by removing the historical two-week interval between map and treat, delivering both components of the SIRT procedure on the same day. A traditional approach using femoral access would require a prolonged period of immobility and potentially an overnight stay. By adopting a transradial approach without sedo-analgesia, an ambulatory day-case map and treat SIRT with no post-procedure immobilisation was performed. This case report demonstrates the technical feasibility of same-day 'map-and-treat' SIRT, highlighting a paradigm shift from the conventional femoral access method and immobilisation to an 'ambulatory' approach with immediate mobilisation post-procedure.

7.
Aging Cell ; 21(8): e13680, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992692

ABSTRACT

Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-ß1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-ß1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-ß1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-ß1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-ß1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-ß1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-ß1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-ß1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.


Subject(s)
Interleukin-11/metabolism , Pulmonary Fibrosis , Sirtuin 1/metabolism , Vitamin D Deficiency , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Animals , Fibrosis , Mice , Mitogen-Activated Protein Kinase Kinases/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Sirtuin 1/genetics , Transforming Growth Factor beta1/metabolism , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
8.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1947760

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Host-Pathogen Interactions , Molecular Targeted Therapy , Protein Processing, Post-Translational , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Exoribonucleases/metabolism , Host-Pathogen Interactions/drug effects , Humans , Protein Processing, Post-Translational/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sirtuins/metabolism , Succinates/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
9.
Immune Netw ; 22(3): e21, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1924451

ABSTRACT

As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

10.
Cell Mol Immunol ; 19(8): 872-882, 2022 08.
Article in English | MEDLINE | ID: covidwho-1900480

ABSTRACT

Most deaths from the COVID-19 pandemic are due to acute respiratory distress syndrome (ARDS)-related respiratory failure. Cytokine storms and oxidative stress are the major players in ARDS development during respiratory virus infections. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to SARS-CoV-2 infection. Here, we found that activation of NRF2/HMOX1 significantly suppressed SARS-CoV-2 replication in multiple cell types by producing the metabolite biliverdin, whereas SARS-CoV-2 impaired the NRF2/HMOX1 axis through the action of the nonstructural viral protein NSP14. Mechanistically, NSP14 interacts with the catalytic domain of the NAD-dependent deacetylase Sirtuin 1 (SIRT1) and inhibits its ability to activate the NRF2/HMOX1 pathway. Furthermore, both genetic and pharmaceutical evidence corroborated the novel antiviral activity of SIRT1 against SARS-CoV-2. Therefore, our findings reveal a novel mechanism by which SARS-CoV-2 dysregulates the host antioxidant defense system and emphasize the vital role played by the SIRT1/NRF2 axis in host defense against SARS-CoV-2.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Antiviral Agents/pharmacology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Heme Oxygenase-1 , Humans , NF-E2-Related Factor 2 , Pandemics , SARS-CoV-2 , Sirtuin 1 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
11.
Memo ; 15(2): 114-116, 2022.
Article in English | MEDLINE | ID: covidwho-1889060

ABSTRACT

This short review reflects on a personal selection of three abstracts on colorectal cancer (CRC) presented at the 2021 ESMO Congress: (1) KRASG12C as a new therapeutic target in metastatic CRC, supported by data from the KRYSTAL­1 and CodeBreaK101 trials, (2) positive phase 3 data on the possible role of selective internal radiotherapy (SIRT) in the second-line treatment of liver-limited metastatic CRC, and (3) the impact of the coronavirus disease 2019 (COVID-19) pandemic on CRC screening, management and mortality, now and in the upcoming years.

12.
Matrix Biol Plus ; 14: 100106, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1768400

ABSTRACT

The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.

13.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article in English | MEDLINE | ID: covidwho-1760647

ABSTRACT

Parkinson's disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect.


Subject(s)
Parkinson Disease , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Mice , Micronutrients/metabolism , Micronutrients/pharmacology , Micronutrients/therapeutic use , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism , Polyphenols/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use
14.
Cells ; 10(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1551567

ABSTRACT

High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a "damage-associated molecular pattern" molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.


Subject(s)
Disulfides/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Protein Processing, Post-Translational , Animals , COVID-19/metabolism , Humans , Sensory Receptor Cells/metabolism
15.
Clin Immunol ; 233: 108879, 2021 12.
Article in English | MEDLINE | ID: covidwho-1527619

ABSTRACT

COVID-19 is a pandemic requiring immediate solution for treatment because of its complex pathophysiology. Exploration of novel targets and thus treatment will be life savers which is the need of the hour. 2 host factors- TMPRSS2 and ACE2 are responsible for the way the virus will enter and replicate in the host. Also NRF2 is an important protein responsible for its anti-inflammatory role by multiple mechanisms of action like inhibition of NF-kB, suppression of pro-inflammatory genes, etc. NRF2 is deacetylated by Sirtuins and therefore both have a direct association. Absence of SIRT indicates inhibition of NRF2 expression and thus no anti-oxidative and anti-inflammatory protection for the cell. Therefore, we propose that NRF2 activators and/or SIRT activators can be evaluated to check their efficacy in ameliorating the symptoms of COVID-19.


Subject(s)
COVID-19/immunology , NF-E2-Related Factor 2/immunology , SARS-CoV-2/immunology , Sirtuins/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Sirtuins/metabolism , Virus Attachment
16.
Meta Gene ; 31: 100990, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1482826

ABSTRACT

BACKGROUND: Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. METHODS: The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. RESULTS: Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. CONCLUSION: An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.

17.
Cells ; 10(2)2021 02 21.
Article in English | MEDLINE | ID: covidwho-1110386

ABSTRACT

Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent histone deacetylases that incorporate complex functions in the mechanisms of cell physiology. Mammals have seven distinct members of the SIRT family (SIRT1-7), which play an important role in a well-maintained network of metabolic pathways that control and adapt the cell to the environment, energy availability and cellular stress. Until recently, very few studies investigated the role of SIRTs in modulating viral infection and progeny. Recent studies have demonstrated that SIRT1 and SIRT2 are promising antiviral targets because of their specific connection to numerous metabolic and regulatory processes affected during infection. In the present review, we summarize some of the recent progress in SIRTs biochemistry and their emerging function as antiviral targets. We also discuss the potential of natural polyphenol-based SIRT modulators to control their functional roles in several diseases including viral infections.


Subject(s)
Metabolic Networks and Pathways , Sirtuins/metabolism , Virus Diseases/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Humans , Metabolic Networks and Pathways/drug effects , Models, Molecular , Molecular Targeted Therapy , NAD/metabolism , Sirtuins/analysis , Virus Diseases/drug therapy , Viruses/drug effects , Viruses/metabolism
18.
Int J Infect Dis ; 105: 49-53, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1071458

ABSTRACT

BACKGROUND/OBJECTIVES: A dysregulated inflammatory profile plays an important role in coronavirus disease-2019 (COVID-19) pathogenesis. Moreover, the depletion of lymphocytes is typically associated with an unfavourable disease course. We studied the role and impact of p53 and deacetylase Sirtuin 1 (SIRT1) on lymph-monocyte homeostasis and their possible effect on T and B cell signalling. METHODS: Gene expression analysis and flow cytometry were performed on peripheral blood mononuclear cells (PBMC) of 35 COVID-19 patients and 10 healthy donors (HD). Inflammatory cytokines, the frequency of Annexin+ cells among CD3+ T cells and CD19+ B cell subsets were quantified. RESULTS: PBMC from COVID-19 patients had a higher p53 expression, and higher concentrations of plasma proinflammatory cytokines (IL1ß, TNF-α, IL8, and IL6) than HD. Deacetylase Sirtuin 1 (SIRT1) expression was significantly decreased in COVID-19 patients and was negatively correlated with p53 (p = 0.003 and r = -0.48). A lower expression of IL-7R and B Cell linker (BLNK), key genes for lymphocyte homeostasis and function, was observed in COVID-19 than in HD. The reduction of IgK and IgL chains was seen in lymphopenic COVID-19 patients. A significant increase in both apoptotic B and T cells were observed. Inflammatory cytokines correlated positively with p53 (IL-1ß: r = 0.5 and p = 0.05; IL-8: r = 0.5 and p = 0.05) and negatively with SIRT1 (IL1-ß: r = -0.5 and p = 0.04; TNF-α: r = -0.4 and p = 0.04). CONCLUSIONS: Collectively, our data indicate that the inflammatory environment, the dysregulated p53/SIRT1 axis and low expression of IL7R and BLNK may impact cell survival, B cell signalling and antibody production in COVID-19 patients. Further studies are required to define the functional impact of low BLNK/IL7R expression during severe acute respiratory syndrome coronavirus-2 infection.


Subject(s)
COVID-19/immunology , Homeostasis , Lymphocytes/immunology , SARS-CoV-2 , Sirtuin 1/physiology , Tumor Suppressor Protein p53/physiology , Aged , Cytokines/blood , Female , Humans , Male , Middle Aged
19.
J Inflamm (Lond) ; 18(1): 3, 2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1054824

ABSTRACT

SARS-CoV-2 is a betacoronavirus causing severe inflammatory pneumonia, so that excessive inflammation is considered a risk factor for the disease. According to reports, cytokine storm is strongly responsible for death in such patients. Some of the consequences of severe inflammation and cytokine storms include acute respiratory distress syndrome, acute lung injury, and multiple organ dysfunction syndromes. Phylogenetic findings show more similarity of the SARS-CoV-2 virus with bat coronaviruses, and less with SARS-CoV. Quercetin is a carbohydrate-free flavonoid that is the most abundant flavonoid in vegetables and fruits and has been the most studied to determine the biological effects of flavonoids. Inflammasomes are cytosolic multi-protein complexes assembling in response to cytosolic PAMP and DAMPs, whose function is to generate active forms of cytokines IL-1ß and IL-18. Activation or inhibition of the NLRP3 inflammasome is affected by regulators such as TXNIP, SIRT1 and NRF2. Quercetin suppresses the NLRP3 inflammasome by affecting these regulators. Quercetin, as an anti-inflammatory, antioxidant, analgesic and inflammatory compound, is probably a potential treatment for severe inflammation and one of the main life-threatening conditions in patients with COVID-19.

20.
Curr Neurovasc Res ; 17(5): 765-783, 2020.
Article in English | MEDLINE | ID: covidwho-922756

ABSTRACT

Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.


Subject(s)
Circadian Clocks/genetics , Metabolic Diseases/genetics , Niacinamide/genetics , Sirtuin 1/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Humans , Metabolic Diseases/diagnosis , Metabolic Diseases/metabolism , Niacinamide/metabolism , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL